DFA¶
-
class
fathon.
DFA
(tsVec)¶ Bases:
object
Detrended Fluctuation Analysis class.
Parameters: tsVec (iterable) – Time series used for the analysis. -
computeFlucVec
(winSizes, polOrd=1, revSeg=False, unbiased=False)¶ Computation of the fluctuations in each window.
Parameters: - winSizes (numpy ndarray) – Array of window’s sizes.
- polOrd (int, optional) – Order of the polynomial to be fitted in each window (default : 1).
- revSeg (bool, optional) – If True, the computation of F is repeated starting from the end of the time series (default : False).
- unbiased (bool, optional) – If True, the unbiased version of DFA is computed, and revSeg is ignored. To be used on short time series (default : False).
Returns: - numpy ndarray – Array n of window’s sizes.
- numpy ndarray – Array F containing the values of the fluctuations in each window.
-
fitFlucVec
(nStart=-999, nEnd=-999, logBase=2.718281828459045, verbose=False)¶ Fit of the fluctuations values.
Parameters: - nStart (int, optional) – Size of the smaller window used to fit F (default : first value of n).
- nEnd (int, optional) – Size of the bigger window used to fit F (default : last value of n).
- logBase (float, optional) – Base of the logarithm for the log-log fit of n vs F (default : e).
- verbose (bool, optional) – Verbosity (default : False).
Returns: - float – Slope of the fit.
- float – Intercept of the fit.
-
multiFitFlucVec
(limitsList, logBase=2.718281828459045, verbose=False)¶ Fit of the fluctuations values in different intervals at the same time.
Parameters: - limitsList (numpy ndarray) – kx2 array with the sizes of k starting and ending windows used to fit F.
- logBase (float, optional) – Base of the logarithm for the log-log fit of n vs F (default : e).
- verbose (bool, optional) – Verbosity (default : False).
Returns: - numpy ndarray – Slopes of the fits.
- numpy ndarray – Intercepts of the fits.
-
saveObject
(outFileName)¶ Save current object state to binary file.
Parameters: outFileName (str) – Output binary file. .fathon extension will be appended to the file name.
-
Usage examples¶
import numpy as np
import fathon
from fathon import fathonUtils as fu
#time series
a = np.random.randn(10000)
#zero-mean cumulative sum
a = fu.toAggregated(a)
#initialize dfa object
pydfa = fathon.DFA(a)
#compute fluctuation function and Hurst exponent
wins = fu.linRangeByStep(10, 2000)
n, F = pydfa.computeFlucVec(wins, revSeg=True, polOrd=3)
H, H_intercept = pydfa.fitFlucVec()
#compute Hurst exponent in different ranges
limits_list = np.array([[15,2000], [200,1000]], dtype=int)
list_H, list_H_intercept = pydfa.multiFitFlucVec(limits_list)